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Abstract. We study the non-equilibrium behaviour of three-dimensional spin glasses in the
Migdal–Kadanoff approximation. This approximation is exact for disordered hierarchical lattices
which have a unique ground state and equilibrium properties correctly described by the droplet
model. Extensive numerical simulations show that this model lacks ageing in the remanent
magnetization as well as a maximum in the magnetic viscosity in disagreement with experiments
as well as with numerical studies of the Edwards–Anderson model. This result strongly limits the
validity of the droplet model (at least in its simplest form) as a good model for real spin glasses.

Spin glasses are disordered magnets, which for low impurity concentrations above the Kondo
regime display interesting non-equilibrium phenomena. In particular, a freezing of the
dynamics appears at a temperature Tc, below which slow relaxation phenomena manifest
through non-stationary effects in the zero-field-cooled magnetization. In this regime different
non-equilibrium phenomena have been observed such as ageing, remanence and several
memory as well as chaotic effects [1]. Despite the great activity devoted to understanding
the nature of the low-temperature phase in three-dimensional spin glasses (for a review of
numerical simulations, experiments and theory, see [2]) many questions regarding the ground
state (e.g., its shape and its uniqueness) and the type of excitations still remain unanswered.

The mean-field picture for spin glasses [3] (i.e. the results obtained for the Sherrington–
Kirkpatrick model), despite its great theoretical interest, it is not able to furnish a real-space
picture of the type of excitations present in spin glasses. To fill this gap, and based on domain
wall scaling arguments (initially proposed by McMillan and Bray and Moore), Fisher and Huse
proposed what has been termed as the droplet model for spin glasses [4]. In the droplet model
there are two unique ground states related by spin inversion symmetry. Thermal fluctuations
activate droplets which are supposed to be compact domains of typical sizeL and fractal surface
of dimension ds � d −1. These excitations cost a free energy which grows as ϒ(T )Lθ , where
θ is a zero-temperature exponent and ϒ(T ) is a temperature-dependent stiffness constant. The
idea that excitations in spin glasses are compact droplets is the simplest description that finds
its most successful application in the study of phase transitions in ordered systems. Despite its
inherent simplicity, the droplet model has a severe limitation, i.e. its main assumptions remain
to be proven with a correct microscopic theory. If one of its key assumptions were wrong then
the whole set of predictions emerging from the model would need to be revisited.
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From the dynamical point of view the main difference between mean-field-like and droplet
pictures can be found in the behaviour of the ageing component of the remanent magnetization.
In fact, in the ageing regime, even if both predict a dependence of the response function
Rag(t, tw) on the waiting time tw, once the integrated response Mag(t, tw) = ∫ t

tw
dsRag(t, s)

is considered, different behaviours can be found in the limit t , tw → ∞, with t/tw constant.
In the droplet model, as in usual coarsening models, this limit is zero, while in spin-glass
mean-field models it is finite. The presence of this anomalous response is one of the original
features of the spin-glass mean-field models.

Now, which is the appropriate microscopic model that correctly describes the spin-glass
transition? The simplest proposal was put forward by Edwards and Anderson almost 20 years
ago [5], who introduced a random bond nearest-neighbour interaction model, the so-called
Edwards–Anderson (EA) model. It is widely believed that the EA model is a real spin glass,
i.e. it reproduces the majority of results found experimentally in the laboratory. So the question
is whether the droplet model [4] is the appropriate theory to describe the phenomenology
already contained in the EA model. Despite the large number of numerical works devoted to
this question (see the reviews [6, 7]) there is still no universal agreement on this.

Our work has been motivated by recent results by Moore et al [8] who found that finite-size
effects in the Migdal–Kadanoff (MK) approximation of the three-dimensional EA model are
mean-field-like. In the thermodynamical limit the MK approximation is known to be described
by the droplet model with ds = d−1 and θ � 0.26 [10,11]. Consequently, they suggested that
the droplet model could also explain the vast majority of numerical simulation results for the
EA model obtained during the last decade (which, on the other hand, have been taken by the
Rome group as evidence against the droplet picture). This is an interesting observation whose
physical meaning and consequences need to be better understood—one should note that this
observation was anticipated some time ago in a theoretical study of the one-dimensional spin-
glass chain [9]. This controversy has centred around the study of the spin-glass equilibrium
properties. Now it is time to check whether non-equilibrium behaviour is well reproduced by
the droplet model. This is of the upmost importance because experimental measurements in
spin glasses in the low-temperature regime are always taken in the out-of-equilibrium regime.

In this paper we wish to show that the MK model lacks one of the key features of
real spin glasses found in the laboratory, i.e. ageing in the zero-field-cooled magnetization.
Consequently, the physics contained in the MK approximation corresponds to the coarsening
of a disordered ferromagnet being far from what is observed in real spin glasses.

The EA model in the presence of a field is defined by

H = −
∑
(i,j)

Jij σiσj − h
∑
i

σi (1)

where the site indices run on the nodes of a cubic lattice, (i, j) stands for nearest-neighbour
pairs, the spins take valuesσi = ±1 and the couplings are extracted from a Gaussian distribution
of zero average and unit variance. Following [8] we will consider the three-dimensional EA
model in the MK approximation which amounts to considering a hierarchical lattice that is
constructed iteratively by replacing each bond by eight bonds as indicated in figure 1. Denoting
by g the number of generations then the total number of bonds is 8g , which corresponds to the
number of sites for a cubic lattice with lattice size L = 2g .

The order parameter can be defined through the equilibrium autocorrelation function,

qEA = lim
t→∞ lim

V→∞

∑V
i=1 xi〈σi(t)σi(0)〉∑V

i=1 xi

(2)

where V = 8g = L3 is the volume, and the averages 〈· · ·〉 are taken over dynamical histories
starting from different equilibrium initial conditions at time zero. The xi parameters are
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Figure 1. Elementary step in the construction of the hierarchical lattice, where the MK
approximation is exact.

weights which take into account the fact that a given site is connected with a different number
of bonds depending on its generation level (i.e. depending on which iteration in the recursive
construction of the lattice that site was generated). Our results concentrate on the choice xi = 1,
i.e. all sites are identically weighted. However, in addition, the results obtained with xi = ci ,
where ci is the connectivity of site i (so all bonds are identically weighted), corroborate our
conclusions†.

We have concentrated our attention on the study of the relaxational dynamics in the low-
temperature phase T < Tc � 0.88 [10], below which qEA defined in equation (2) differs
from zero. We have used Monte Carlo dynamics with the Metropolis algorithm and random
updating‡. In our runs we follow typical ageing-experiment scheduling: that is, at t = 0
we quench the system from infinite temperature to a finite one T < Tc without the magnetic
field, letting the system evolve for a time tw. At time tw we switch the magnetic field on. For
subsequent times (t > tw) the system continues to relax in a magnetic field h and we then
measure the following two quantities: (a) the autocorrelation function

C(t, tw) =
∑V

i=1 xiσi(t)σi(tw)∑V
i=1 xi

(3)

and (b) the zero-field-cooled susceptibility defined by

χZFC(t, tw) = lim
h→0

MZFC(t, tw)

h
(4)

where

MZFC(t, tw) =
∑V

i=1 xi[σi(t) − σi(tw)]∑V
i=1 xi

. (5)

The limit in equation (4) is usually ignored, because we always work in the linear response
regime. All the data we present have been obtained with a magnetic field of intensity h = 0.1
and we have checked that the same susceptibility is obtained by doubling the perturbing field.

We have performed extensive numerical simulations for g = 5 (L = 32) and g = 6
(L = 64) at two different temperatures (T = 0.7, 0.5) and many values of tw. We obtain
the same results for both temperatures. Here we present only those for T = 0.7, while the
complete set of data will be reported elsewhere. Note that the ratio, T/Tc � 0.8, used here is
very similar to that used in many experiments [12].

† We think that this way of giving the same weight to all the links is quite unnatural. A better way to achieve
it is to consider observables that only depend on the links, such as the link–link correlation function Clink(t) =
N−1

link

∑
(i,j)〈σi(t)σj (t)σi (0)σj (0)〉, which tends to the link overlap qlink in the limit of equation (2). In this case the

natural perturbing field would be a little change in the interaction strength: Jij → Jij + hεij . In addition, in this case
the results are in agreement with our conclusions.
‡ In each time step every spin is updated ci times.
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Figure 2. The correlation functions for g = 6, T = 0.7 and different tw clearly show ageing. The
inset shows the same curves as a function of the scaling variable log(t)/ log(tw).

In figure 2 we show the autocorrelation function for different values of tw. One can observe
the presence of ageing characteristics of many glassy systems.

Following general assumptions, in the asymptotic regime tw → ∞, the correlation
function decomposes into two terms, each one governing a different time regime. In the
quasi-equilibrium regime, t − tw 
 tw, the system is in some sort of local equilibrium and
the correlation functions are time-translationally invariant. In the ageing regime t − tw � tw,
the system ages and the correlation functions depend on both times through non-trivial scaling
relations. So in general, one can write [13]

C(t, tw) = Cst (t − tw) + Cageing(t, tw) (6)

with limτ→∞ Cst (τ ) = qEA. In equilibrium the ageing part vanishes and one recovers the
previous result of equation (2).

The difference between the experimental data and the EA model on one hand, and the MK
approximation and the droplet model on the other, is the large-times scaling of the dynamical
functions. As can be seen in the inset of figure 2, in the MK approximation we find that
the ageing part of the autocorrelation function is well described, in the large-times limit, by a
function of the ratio log(t)/ log(tw). On the other hand, in experiments and in the EA model,the
scaling is far from the log(t)/ log(tw) and similar to t/tw.

Because of the use of the scaling variable, in the inset of figure 2 the data corresponding to
the quasi-equilibrium regime collapse on the line log(t)/ log(tw) = 1. Thus we can estimate
the value of qEA as the limit of the scaling function for log(t)/ log(tw) → 1+, i.e. qEA � 0.6
(a value compatible with [8]).

Our most striking result is found for the zero-field-cooled susceptibility χZFC(t, tw)

shown in figure 3. In the MK approximation there is no dependence of the susceptibility
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Figure 3. The zero-field-cooled susceptibility data do not show any ageing. In the legend we report
the values of g and tw . In the inset we show the same quantity measured in the EA model, which
closely resembles the experimental data.

on tw. We believe that such a result, which is characteristic of droplet models and
kinetic growth [14], makes the droplet model, at least in its simplest form, inadequate
for the description of the EA one. Ageing in both zero-field-cooled and field-cooled
magnetization is so commonly found in experiments on spin glasses that it is not clear
to us how this result can be explained by the standard droplet theory. Note also that the
peak in the magnetic viscosity S(t, tw) = ∂χZFC(t, tw)/∂ log(t − tw) (experimentally very
well observed [15]) is completely absent in the MK approximation. We recall that ageing
in χZFC(t, tw), with a peak in the S(t, tw), is naturally found in the EA model (see the
inset of figure 3) as well as in mean-field models. It then remains to be explained why
these ageing effects are naturally and easily observed in the EA model and not in the MK
approximation.

Finally, we consider the analysis of the fluctuation–dissipation ratio which is useful to
compare the results obtained in the MK approximation with those obtained in the EA and
coarsening models [16, 17]. In the quasi-equilibrium regime (t − tw 
 tw) the system is in
local equilibrium. Consequently, both correlation and susceptibility are time-translationally
invariant and the fluctuation–dissipation theorem (FDT) is satisfied,

T χZFC(t − tw) = 1 − C(t − tw). (7)

In the ageing regime (t − tw � tw) the system ages and FDT is violated. Then it is useful to
define the so-called fluctuation–dissipation ratio [16]

X(t, tw) = T R(t, tw)
∂C(t,tw)

∂tw

(8)
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Figure 4. The absence of response in the ageing regime is suggested by the rapid convergence of
the χZFC versus C curves to the plotted lines. Note that the horizontal line denotes an upper bound
for the data.

which in the asymptotic long-time limit t , tw → ∞ may be uniquely expressed as function of
the correlation C(t, tw) yielding

T χZFC(t, tw) =
∫ 1

C(t,tw)

X(C) dC. (9)

Moreover, the X(C) can be related to equilibrium quantities [18]. The previous expression
reduces to equation (7) in the quasi-equilibrium regime where X = 1. A plot of T χZFC(t, tw)

as a function of C(t, tw) is expected to show two different behaviours. For qEA < C < 1 we
have X = 1 and so the curve T χZFC versus C has slope −1. For C < qEA the X may be a
non-vanishing function of C and we have T χZFC(t, tw) = (1 − qEA) +

∫ qEA

C(t,tw)
X(C) dC. In

coarsening models, X = 0 for C < qEA and so the function χZFC(C) is flat for C < qEA. In
figure 4 we show χZFC as a function of C for different values of g and tw, which show that
the behaviour rapidly converges to that of coarsening models and strongly differs from that
observed in finite-dimensional EA spin glasses [17]. The horizontal line in figure 4 shows
the infinite time limit of the susceptibility, extrapolated from the data of figure 3 and from
those for the field-cooled magnetization (not shown). It is an upper bound for the plotted
curves, thanks to the positiveness of the X ratio. From figure 4 we can also get an estimate
for the qEA order parameter, defined as the abscissa value where the curves leave the FDT line
(T χZFC = 1 − C). This point is converging very reasonably in the large-times limit, near to
the intersection of the two lines, giving qEA � 0.6 (as already found from the data of figure 2).
Figure 4 adds more evidence to support the fact that spin glasses in the MK approximation do
not capture all the key features of finite-dimensional spin glasses as we understand them from
the three-dimensional EA model.
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To summarize, we have shown that in the MK approximation spin glasses do not show
ageing in the integrated response function. This ageing is experimentally observed in real spin
glasses through zero-field-cooled and field-cooled measurements and constitutes one of the
key features which distinguishes spin glasses from other disordered systems. In addition, the
study of the fluctuation–dissipation ratio suggests that relaxation in this model is driven by
coarsening similar to conventional ferromagnets [14, 17].

In our opinion, the trivial dynamics observed in this model is mainly due to the lack of
strong frustration in the hierarchical lattice. Even if locally there is some frustration, the spin-
glass ground state on the hierarchical lattice can be calculated in polynomial time and this would
suggest the existence, on large scales, of only one phase dominating the dynamics. Then, the
relaxational dynamics should not greatly differ from the dynamics taking place in a slightly
frustrated coarsening model. In contrast, in spin-glass dynamics the number of competing
phases is very high and this competition generates a very rich dynamical behaviour, e.g. ageing
in the zero-field-cooled magnetization. In the limit of zero temperature, the existence of many
phases is reflected by the presence of a large number of almost degenerate configurations, thus
making the ground state search a very difficult problem.

One could argue that these results for the MK approximation are not extrapolable to the
droplet model because, in the general case, the inequality ds � d − 1 could restore ageing.
Despite this possibility our results unambiguously show that the MK model is not a good model
for realistic spin glasses. A new class of excitations or droplets must be present in spin glasses.
The droplet model in its simplest version does not capture the physics behind real spin glasses.
One possible generalization of the droplet model (which would no longer be simply droplet)
is to consider two kinds of basic excitations in a spin glass: on small length scale the usual
droplets and, in addition, system-size scale collective rearrangements [19]. The second kind of
excitations are, at present, ignored in the droplet model (they are exponentially rare), but they
could be responsible for the many mean-field-like features observed in finite-dimensional spin
glasses. In terms of a very simplified energy landscape, the two excitations would correspond,
respectively, to the local movements of the system in a single ‘valley’ and to the jumps from
one valley to an other. In our opinion, a new theory comprehensive of the small-scale droplets
and the system-size scale excitations (with a clear real-space picture) would be welcome and
could hopefully terminate the longstanding discussion on finite-dimensional spin glasses.
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